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Abstract 

Subtractive dither is a technique  which  may  be  used to reduce the occurrence 
of compression artifacts from  near-lossless  compression.  Standard subtractive 
dither incurs a cost, however,  in the form of an  increase  in rate and distortion, 
and by  giving the reconstructed signal  an  overall  grainy appearance. It is pos- 
sible to compromise  between the costs  and  benefits of dithering by  using dither 
signals  which tend to take on  smaller  values than  the  standard dither signal. 
For  reasonable  cost  and  benefit metrics, the optimal dither signals are shown to 
be those which are uniform  on  intervals of the form [ -k /2 ,  k / 2 ] ,  where IC E [0, q] 
and q is the quantization step size. Additional results are given  under  more 
general assumptions. 

1 Introduction 
Most lossy data compression  algorithms  have  some  tendency to  produce  undesirable 
artificial  features (artifacts) in the reconstructed data. We are  primarily  concerned 
with near-lossless compression of sampled  signals, especially images. In near-lossless 
compression, the  magnitude of the individual  sample  errors is usually strictly  limited, 
but several  correlated  errors  can  produce  artifacts which may interfere  with scientific 
analysis of the  signal, even if the distortion is normally  almost  imperceptible.  These 
artifacts may include: 

0 A biased  average value of some regions of the signal. 

0 “Contouring”, or  steplike  signal  value profiles, in slowly changing portions of 
the signal. 

0 Erasure of faint  features which  would be  detectable  in  the original  signal  because 
they occupy a large area. 

These  artifacts  are essentially  caused by the fact that  the quantization  errors  are  not 
independent from each  other  or from the original  signal  values. 

Subtractive  dither [4, 51 is a  technique for reducing  or  eliminating artifacts.  In 
its simplest  form,  a  pseudorandom dither value,  uniformly distributed on [-q/2,4/2] 

*See Section VI1 and Appendix C of [2] for a more complete version of this  article. 
+The work described was funded by the TMOD Technology Program and performed at the  Jet 
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(where q is the  step size of the uniform quantizer being used),  is  added to  the value 
to  be quantized. The same  dither value is then  subtracted from the quantized value 
during  reconstruction. Thus in a predictive compression algorithm the reconstructed 
value is 2 = Qq(z - 2 + D )  + 2 - D ,  where z is the sample, 2 is the predicted  value, D 
is the dither  pseudorandom  variable, and Qq is a uniform quantization  function  with 
step size q.  It is  well-known that  the resulting  quantization noise Z - z is uniform on 
[ - 4 / 2 , q / 2 ]  and independent of x and 2.  

When  this  dithering technique is used, the resulting  root-mean-squared  error 
(RMSE)  distortion of the reconstructed  signal will be exactly  equal to q/m, at 
least  within the approximation that  the  dither signal  may take on a continuum of 
values. This  computation is based on the uniform error  distribution.  This  RMSE 
value will usually represent an increase as compared to  the RMSE for the  same com- 
pression without  dithering,  since  in  the  latter case the error  distribution will generally 
be slightly  peaked if the estimator  producing 2 is performing well. The resulting rate 
(in  bits/sample) will typically be higher also, since the values being quantized will 
have a larger variance. See [5] for some useful techniques for reducing  these increases. 

The reconstructed  signal will have none of the  artifacts mentioned  above, since 
those  artifacts  occur  due to correlations between the quantization noise and  the signal. 
However, the  entire signal  may appear somewhat  grainy  due to  the uniform noise on 
all  samples. 

It is possible to compromise between the  dithering described  above and  no  dither. 
This  can  be accomplished by using a dither signal which tends to take on values of 
smaller  magnitude than would a signal uniformly distributed on [ - q / 2 , q / 2 ] .  Such 
a dither signal will still  increase the  rate  and  distortion,  but by a smaller amount, 
and  it will remove some correlation between the  reconstruction  errors  and  the signal. 
However, many distributions  are possible and  it is not  immediately obvious how to 
determine which are  best. 

In  Section 2, we define metrics for measuring the relative  costs and benefits of 
dither  distributions. Based on  these  metrics, we then present  results on the  nature 
of optimal  dither  signals,  including specific results which apply  under  reasonable as- 
sumptions. 

2 Problem  Formulation 
We generally assume the original and  reconstructed  signal as well as the  dither signal 
may  take on a continuum of values; however, we later present some results for the 
discrete case. 

We denote the probability  measure of a general dither  random  variable D by Po 
(so that PD(S) = Pr(D E S ) ) .  Suppose A(PD) is a metric for the degree to which 
the  reconstructed signal will contain  artifacts,  and C(PD) is a metric for the cost of 
the  dither signal as manifested by the increase in rate  and distortion.  Then we would 
like to determine the  dither signal  distributions which achieve the optimal tradeoff 
between minimizing A(PD) and minimizing C(PD). 

Two  reasonable choices for C(PD) are  the variance of D and  the second moment 
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of D. (Note that these  are  the  same if the dither  distribution  has  mean 0.) Exper- 
imentally, the variance of D is a good indicator of the increase  in  distortion from 
dithering. It is logical that  the variance of D also gives an indication of the increase 
in rate, since the  rate is generally roughly equal to a  constant  plus the logarithm of 
the variance of the residual  distribution.  Figure  6(a) of [5] suggests that a similar 
relation will hold if the values of D are supplied to  the entropy  coder and decoder. 

Reasonable choices of A(PD) are more  complicated.  When  dithering is not  used, 
the  error 2 - x in a  reconstructed  sample  is  dependent  on the  estimate f of the 
sample by 2 - x = i + Q,(x - i) - x .  When  subtractive  dither  is used this  error 
is random,  and  the dependence between the reconstruction  error  and  the  estimate 
takes the form of a possible “bias”  in the reconstructed value. Specifically, E [ 2  - x]  = 
E[Q,(x - f + D )  - ( x  - 2 + D ) ] .  Treating the signal and  the  estimate as random 
variables makes this  quantity a random  variable; the  (random)  bias is then 

ED[Q,(X - X + D )  - ( X  - X + D ) ] .  

To deal  more easily with  this expression, we introduce  quantities which behave better 
than X and X .  Let R = X -X - Q,(X - X ) .  Note that R is the difference between a 
sample  and  its  estimate,  translated by a multiple of q to  be in the range [-4/2,  q/2]. If 
no dither is used, R is the error  in the  reconstructed  sample,  and when a dither signal 
is used, R should  still  be distributed in the same way as the no-dither  reconstruction 
error (that is, ideally uniformly distributed over [-q/2,4/2] but in practice  typically 
slightly  peaked at 0). Let R = Q,(R + D )  - D ,  so that R is the quantized value of 
subtractively  dithered R. Note that if no dither is used then R = 0. 

With  these definitions we have 

E D [ R  - R] = ED[Q,(R + 0) - D - ( X  - X )  + Q,(X - X ) ]  
= ED[Q,(X - X - Q,(X - X )  + 0) - ( X  - X + 0) + Qq(X - X ) ]  
= ED[Q,(X - X + 0) - ( X  - X + D ) ] ,  

so  ED[^ - R] expresses the sample  bias  in  terms of R and D.  We let A(PD) be the 
mean-squared value of this  bias (averaged over R);  that is 

A(PD) = E R [ ( E D [ R  - R])2] ,  

or, equivalently, 

We primarily consider the case where R is distributed uniformly on [-q/2,  q/2] (or at 
least where we weight the bias uniformly over this  range of R)  so that 

A(PD) = / : ( r  - E[RlR = ~ - ] ) ~ d r .  ( 2 )  

This  metric is discussed in [4] and [6]. Intuitively, A(PD) indicates the degree to which 
the expected  mean of a sample  can  be biased by the quantization reference point. 

- 
2 
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Suppose A(PD) is given by (2) and C(PD) is the variance or the second moment of 
Po. When no dither is used, C = 0 and A = q 2 / 1 2 .  When a dither  that is uniform on 
[ - q / 2 , q / 2 ]  is used, C = q 2 / 1 2  and A = 0. Note that 0 is the minimum value of both 
A(PD) and ~ ( P D ) .  Our definitions of A and C are  intended for comparison  among 
dither  distributions when q is constant.  There is no obvious significance of a specific 
value of A or C ,  so we can  only  determine the range of best compromises between A 
and C. In a particular  application,  experimentation  and  subjective  judgement will be 
needed to determine which of these  “best compromises” to use. 

3 Overview of Results 
In Section 4 we present  several  results concerning the  nature of optimal  dither  distri- 
butions.  In  particular, we show (Theorem 5) that when A(PD) is given by (2) and 
C(PD) is either  the variance  or the second moment of PO, then  the  optimal  trade- 
off between C(PD) and A(PD) occurs for dither  distributions which are uniform on 
[-IC/2, k / 2 ]  for IC E [O, q] (where k = 0 corresponds to no dither). 

The discrete  case is also addressed.  In that case the samples are integers, q = 26f 1 
where S is the maximum  absolute  error allowed, and D must take on integer values. 
When A(PD) is the discrete  analogue of ( 2 )  and C(PD) is the second moment of 
Po, then  the  optimal  distributions  are  those which are uniform on {-IC,. . . , IC} where 
IC E (0, .  . . , a}, or are a convex combination of two such  distributions  with consecutive 
values of IC (Theorem 9). 

As an example of the use of these  results, an image we refer to as “munar” was 
compressed with a simple  predictive  algorithm  with  maximum  sample  error S = 2. 
A dither signal uniformly distributed on {-IC,. . . ,IC} was used, where IC = 0, 1, or 
2 .  Note that k = 0 corresponds to no dither  and IC = 2 corresponds to  standard 
subtractive  dither. Table 1 demonstrates how the cost of dithering increases as the 
dither signal  amplitude increases. Figure 1 contains a portion of the original “mu- 
nar” image, and  Figure 2 shows an enlarged and  contrast-enhanced  detail  area of the 
original and  reconstructed  images, from which it can  be seen how the dither  signal 
amplitude affects the appearance of the reconstructed  image. We make  no claim as 
to which version is “best”.  When displayed normally, the original and all three recon- 
structed images are  virtually indistinguishable; however, near-lossless compression is 
appropriate for images which  will be  subject  to scientific analysis,  in which case the 
appearance of these  enhanced images is quite relevant. 

4 Detailed Results 
In  this section we formally state theorems  indicating that  the dither  distributions 
described  in the previous section are  optimal as claimed. Along the way we present 
general  results which could simplify the process of determining  optimal  distributions 
if the basic assumptions  are modified. Proofs or sketches of proofs may  be found in 
Appendix C of [ 2 ] .  

4 



rate Error  distribution  (percentage of pixels) 
IC 

20.0  20.1 19.9 20.0 19.9 1.414 2.873 2 
19.5 20.1 20.5 20.2 19.8 1.405 2.842 1 
18.0 20.1 22.1 21.2 18.6 1.370  2.819 0 

2 1 0 -1 -2 RMSE (bits/pixel) 

Table  1:  Result of compressing “munar”  with  maximum pixel error 6 = 2 and a 
dither  distribution uniform on {-IC, . . . , IC}. For comparison, the lossless compression 
rate obtained  with the same  algorithm was 5.049 bits/pixel. Notice that  the error 
distribution becomes more uniform as the  dither signal amplitude increases. 

Figure 1: A  portion of the  “munar” image used in  our  dither  example. The  detail 
area shown in Figure 2  is indicated. 

4.1 Continuous Case 
We first consider the case where R and D may take  on a continuum of values. We 
scale the numbers involved so that q = 1. 

Although  our choices of A(PD) and C(PD) under which we find optimal  dither 
distributions  are  reasonable,  it is possible that a more detailed  analysis of a particular 
situation may yield more refined functions A(PD) and C(PD). We have  not  analyzed 
any specific alternate formulation  in  detail, but we present some results which may be 
helpful in determining  optimal  dither  distributions for alternate formulations. Theo- 
rems 1, 3 and 4 give cases in which it is sufficient to consider distributions which are 
concentrated on certain  intervals  or which are symmetric.  Theorem 2  gives conditions 
guaranteeing the existence of optimal  dither  distributions. 

For these  results, we assume A(PD) is of the form (1) but we no longer assume 
PR is uniform on [- i , i]. We also do  not  assume that C(Po) is the variance of D or 
the second moment of D. However, we do place several  restrictions on C. We assume 
that  the cost of no dither is 0, and  that C(Po) 2 0 for each Po. The cost function 
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Figure 2: Dither  example  with maximum pixel error S = 2. Each  image is magnified 
and  contrast-enhanced. (a) Detail of original, (b) compressed and decompressed with 
k = 0 (no  dither),  (c) k = 1, and  (d) IC = 2 (standard  dither). As k increases from 0 
to 2, the appearance of streaks  and artificial regions of constant  intensity  decreases, 
but  an overall grainy look becomes more evident. 
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must also be  one of the following two types: 

Type A: For any  (measurable)  function f : R + R satisfying 0 5 I f  ( x ) [  5 1x1 for all 
real z, and for any Po, we require C(Pf(D1) 5 C(PD), 

Type B: The cost function satisfies the following: 

1. The cost is invariant to translations of D ;  that is, for any z we have 
C(pD+z) = c(pD)* 

2. For any  (measurable)  function f : R "+ R satisfying 0 5 I f  (.)I 5 1x1 for 
all real x ,  and for any P D  with  mean 0, we require that C(Pf(D,) 5 C(PD). 

Intuitively,  a Type A cost function  must assign higher cost to distributions which 
have larger  amplitudes. A Type A cost function  must be  symmetric  about 0 in the 
sense that C(PD) = C(P-,), since  with f(z) = -x we have C(PD) 5 C(P-D) 5 
C(P,). The second moment of D is a Type A cost function. 

A Type B cost function  must be  symmetric  about p when restricted to distribu- 
tions  with  mean p .  The variance of D is a Type B cost function. 

Theorem 1 For  any I'D/, there  exists a PD~/  with C ( P p )  5 C(PD/) and A ( P p )  = 
A (   P D ~ ) ,  and 

(i) if C is a Type A cost function, then PDU can be chosen to be concentrated  on 
1 1  [-2,51; 

(ii) if C is a Type B cost function, then Pp, can be chosen  to be concentrated  on  an 
interval of the form [c - f , c  + i], where c E [-f, f ] ;  

(iii) if C is a Type B cost function which  is  continuous  under  the  topology of weak 
convergence', then P p  can be chosen so that its mean p is in [-f , f ]  and PD// 
is  concentrated  on [ p  - i, p + f ]  . 

Note that Theorem 1 implies that in all cases which obey  our  general  restrictions  on 
the cost function,  it suffices to consider dither  distributions which are  concentrated 
on [-1,1]. 

Theorem 2 If the  (Type A or B) cost function C(P,) is  continuous  under  the  topol- 
ogy of weak convergence  and PR can be described by  a density function p~ (that is, 
PR(S) = 0 whenever  the  Lebesgue  measure of S is 0), then for each a 1 0 there  exists 
a PA which minimizes A(PD) subject  to C(PD) 5 a.  

Theorem 3 Suppose  PR is symmetric about 0 and  can be described b y  a density 
function p ~ .  Suppose also that C is a Type A cost function and C is  convex U. Then 
for any Pot, there  exists a PDU which is symmetric about 0, is  concentrated  on [- f ,  f ] ,  
and for which A(PD//) 5 A(PDr) and C ( P p )  5 C(PD/). 

'A good reference for the topology of weak convergence is Appendix I11 of [l] 
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Observe that Theorem 3 implies that when its hypothesis holds, it suffices to consider 
dither  distributions which are  symmetric  about 0 (and  thus have mean 0) and  are 
concentrated  on [-f , f ] .  

Theorem 4 Suppose PR is  the  uniform  distribution  on [ - f ,  f ] .  Suppose  also  that 
C(PD)  is  a Type B cost function and that C(PD)  is  convex U when  restricted to PD 
with  mean 0. Then  for  any Po/,  there  exists a P D I ~  which is symmetric about 0 ,  is 
concentrated on  [ - f ,  f ] ,  and for  which A(PDI/) 5 A(P,/) and C ( P p )  5 C(PD,). 

Finally, we have the basic continuous case: 

Theorem 5 Suppose A(PD) is  given by  (2) and C(PD)  is  either  the  variance  or  the 
second moment of PO. Suppose lc E [0, q] and  let Ps be the  uniform  distribution  on 
[-lc/2,lc/2].  Then P i  minimizes A(PD) subject to C(PD) = lc2/12. 

This  result is proved by observing that A(PD)  is convex U and  then showing that for 
any zero mean Po with  the  same cost as  PA, 

4.2 Discrete Case 
For the discrete  case we assume that R and D take on integer values. We consider 
only the case where q is odd,  with q = 26 + 1. We use PD to denote the (discrete) 
dither probability  distribution,  with P D ( ~ )  = Pr(D = i ) .  Much of the notation is the 
similar to  that of the continuous case and we rely on  context to distinguish the two. 
In the basic discrete  case A(PD)  is defined as 

and  the cost C(PD)  is the second moment of D. 

consider A(PD)  of the form 
Again we remove some of our specific assumptions  on A(PD) and C(PD) .  We 

Type A For any  function f : Z -, Z satisfying 0 5 I f ( i )  I 5 li I for all  integers i ,  and 
for any Po, we require C(Pf,D,) 5 C(PD). 

Type B The cost function satisfies the following: 
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2. For any  function f : R + R satisfying 0 5 I f  ( x ) [  5 1x1 and f ( x )  - x E Z 
for all  real z, and for any Po, we require that C(Pf(D-,)+,) 5 C(PD) ,  
where p is the mean of D. 

Intuitively,  a Type A cost function  must assign higher cost to distributions which 
have larger  amplitudes. As is the continuous  case, a Type A cost function  must be 
symmetric  about 0 in the sense that C(PD) = ~ ( P - D ) ,  since  with f ( i )  = -i we have 
C(PD) 5 C(P-D) 5 ~ ( P D ) .  The second moment of D is a Type A cost function. 

A Type B cost function  must  be  symmetric about 0 when restricted to distributions 
with  mean 0. The variance of D is a Type B cost function. 

Theorem 6 For any  PDI,  there  exists a PDII with C ( P p )  5 C(PD1) and A(&) 5 
A(PDt), and 

(2) if C is a Type A cost function, then PDU can be chosen to be concentrated  on 
{-6,. . . ,6}; 

(ai) if C is a Type B cost function, then PDII can be chosen to be concentrated  on a 
set of the f o r m  { c  - 6,.  . . , c + 6}, where c E {-a,. . . ,6}. 

Note that Theorem 6 implies that in all cases which obey our  general  restriction  on 
the cost function, it suffices to consider dither  distributions which are  concentrated 
on { - ( q  - I), . . . , g  - 1). 

Theorem 7 If C(PD)  is  continuous  when  restricted  to  PD  which  are  concentrated  on 
{ - ( q  - l), . . . , q - l}, then for each Q 2 0 there  exists a PD which minimizes A(PD) 
subject  to C(PD) 5 a.  

Theorem 7 is the discrete  analogue of Theorem 2. 

Theorem 8 Suppose  PR  is symmetric about 0 and C is a Type A cost function which 
is  convex U. Then  for any P D l ,  there  exists a PDII which  is symmetric about 0 ,  is  
concentrated  on {-6,. . . ,6}, and for which A(PDI,) 5 A(PD1) and  C(PDl1) 5 ~ ( P D , ) .  

Theorem 8 is the discrete  analogue of Theorem 3. 
Note that  there is no simple discrete  analogue of Theorem 4. Our  results for the 

basic discrete  case  (below)  apply when the cost function is the second moment of PD 
and  do not  apply when the cost function is the variance of Po. 

Theorem 9 Suppose A(PD) is  given b y  (3) and C(PD)  is  the  second moment of Po. 
Suppose PA is  the  discrete  distribution  given b y  

Q if lil < k 

if 1 2 1  > k ,  
P;)(i) = { y - ka  if lil = k 

where k E { 1, . . . ,6} and Q 1 9 - ka .  Then P,*, minimizes A( Po) subject  to 
c(PD) = c ( P 6 ) .  
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Note that  this PA is a convex combination of the uniform distributions  on { - k ,  . . . , k }  
and { - ( k  - l), . . . , k  - l}. 

Theorem  9 is proved by first  noting that A(PD) is a convex U function and  then 
using the Kuhn-Tucker conditions [3] to show optimality of PG. 

5 Conclusion 
We have shown that  it is possible to compromise between the degree that  artifacts 
are present in a near-losslessly compressed signal and  the  rate  and  distortion costs of 
subtractive  dithering.  Under  reasonable  assumptions, the optimal  dither  distributions 
are shown to  be uniform distributions  on  the interval [-k/2, k/2], where k E [0,4]. 
Less specific results were also presented  under alternate  assumptions. 

A possible direction for future work on this  subject is to consider how dither  should 
be used when the  quantizer is  not uniform. Of particular  interest  is the case where 
the  center  quantization  “bin” is larger than  the  others, since such a quantizer  can 
yield an improvement is compression under some circumstances. 
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